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Herrn Professor TRENDELENBURG zum 60. Geburtstag gewidmet 

Auf Grund der Verwandtschaft eines elektronischen Halbleiters mit einem Plasma werden die 
Grundgesetze für die Beschreibung periodischer Zustände und deren wellenförmige Ausbreitung in 
einem Halbleiter formuliert und an speziellen Beispielen erörtert. Für das Verhalten der Halbleiter 
im Zentimeterwellen- und Millimeterwellengebiet ergeben sich charakteristische Gesetzmäßigkeiten. 
Die Existenz von Plasmaschwingungen oder -Wellen ist an bestimmte Bedingungen geknüpft, die 
man durch frei verfügbare Parameter in gewissen Grenzen erfüllen kann. 

Zwischen einem Halbleiter und einem ionisierten 
Gas besteht eine weitgehende Verwandtschaft1. Man 
kann deshalb einen elektronischen Halbleiter als ein 
Plasma betrachten. Die thermischen Schallquanten 
des Kristallgitters entsprechen dem Neutralgas, die 
im Stör- und Eigenleitungsbereich ionisierten Dona-
toren und Akzeptoren werden als Gasgemisch ein-
fach geladener negativer und positiver Ionen auf-
gefaßt, zu denen noch das Gasgemisch der quasi-
freien Leitungselektronen und Defektelektronen hin-
zukommt. Die Donatoren und Akzeptoren nehmen 
im allgemeinen an Bewegungsvorgängen innerhalb 
des Plasmas nicht teil. Unter Plasmaschwingungen 
bzw. -Wellen versteht man periodische Zustände und 
deren wellenförmige Ausbreitung. Das System der 
beweglichen Ladungsträger weist Eigenfrequenzen 
auf, die mit der LANGMUiRschen2 Plasmafrequenz 
10p = "|/4 ti e- njm^i in engem Zusammenhang stehen 
(n Teilchendichte, mvff effektive Masse). Bei Metal-
len liegt diese Plasmafrequenz im Ultraviolett. In 
Halbleitern können jedoch bei den sehr viel kleine-
ren Teilchenkonzentrationen Eigenfrequenzen des 
Plasmas auftreten, die für das Gebiet der Mikrowel-
len von Interesse sind. Bei den Minoritätsträgern 
liegen die zugehörigen Wellenlängen sogar im Dezi-
meter- oder Zentimeterbereich. Im Zusammenhang 
mit Zyklotron-Resonanzmessungen haben D R E S S E L -

H A U S , K I P und K I T T E L 3 Plasmaresonanzeffekte beob-
achtet. Bei Zyklotronresonanz ist die Resonanzfre-
quenz durch die LARMOR-Frequenz ojl = e Hje m,.ff 
gegeben. Die Erscheinung der Plasmaresonanz hin-
gegen beruht auf dem Depolarisationseffekt, der 
durch die dielektrische Polarisation des Kristalls ent-
steht. 

1 W. SHOCKLEY, Bell Syst. Techn. J. 4 I, 990 [1951]. -
R Y D E R U. W. SHOCKLEY , Phys. Rev. 8 1 , 139 [1951]. 

2 J. LANGMUIR U. C. T O N K S . Phys. Rev. 33. 195 [1929]. 

E . J . 

Die Plasmaschwingungen werden sowohl von den 
Eigenschaften und der Struktur des Halbleiters als 
auch von den anwesenden elektrischen und magneti-
schen Feldern bestimmt, so daß sich je nach Wahl 
der Parameter und je nach Anordnung des Systems 
eine große Anzahl von möglichen Erscheinungen er-
gibt. Es erscheint uns deshalb angebracht, eine Be-
schreibung des Plasmas in genügender Allgemein-
heit zu formulieren, der sich spezielle Fälle entneh-
men lassen. Außerdem sollen zunächst an einfachen 
Beispielen die Bedingungen für das Auftreten von 
speziellen Plasmaschwingungen und -Wellen unter-
sucht werden, wobei orientierend einige Zusammen-
hänge erörtert werden sollen, die auch für die Frage 
der praktischen Anwendung von Bedeutung sind. 
Wir betrachten deshalb nur den Temperaturbereich 
der Störleitung, in dem alle Donatoren und Akzep-
toren als dissoziiert anzusehen sind. Von L A M P E R T 4 

wurde die Möglichkeit stehender Plasmawellen in 
einer Halbleiterscheibe diskutiert, die einem Elek-
tronenstrahl ausgesetzt wird. Die Frage spezieller 
Möglichkeiten zur Erzeugung von Plasmaschwingun-
gen soll hier zunächst nicht erörtert werden. 

D a s nichtstationäre i n h o m o g e n e P l a s m a 

des Halble i ters 

Bei der Beschreibung des Plasmas machen wir im 
folgenden einige vereinfachende Voraussetzungen: 

1. Die effektiven Massen der Leitungselektronen 
und der Defektelektronen sollen isotrop sein. 

2. Der Einfluß der elektrischen und magnetischen 
Felder auf die Geschwindigkeitsverteilung der Elek-

3 G . DRESSELHAUS, A . F . KIP U. C . KITTEL, Phys . R e v . 9 8 . 3 6 8 
[1955] und 100. 618 [1955]. 

4 M. A. LAMPERT, J. Appl. Phvs. 27. 6 [1956], 
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tronen und Löcher soll vernachlässigt werden. Die 
Dämpfungskonstanten für beide Arten von Ladungs-
trägern werden somit als isotrop und von der Ener-
gie der Teilchen unabhängig angenommen. Das sta-
tische elektrische Feld soll demzufolge noch so klein 
sein, daß die Elektronentemperatur von der Gitter-
temperatur nicht wesentlich verschieden ist. 

3. Wir beschreiben das Plasma makroskopisch-
phänomenologisch, indem wir mit den sich aus den 
äußeren Bedingungen ergebenden Mittelwerten der 
Zustandsgrößen rechnen 

4. Die magnetischen Materialeigenschaften des 
Halbleiters lassen wir unberücksichtigt, so daß man 
sich im folgenden für die Permeabilität // stets den 
Wert 1 eingesetzt zu denken hat. 

Der Zustand des Plasmas wird durch die Momen-
tan-Werte der Feldvektoren des elektromagnetischen 
Feldes E und H. durch die Polarisation P . durch 
die Driftgeschwindigkeiten Vn und V>p und die Kon-
zentrationen der Leitungselektronen und Löcher n 
und p beschrieben. Diese Größen sind soAvohl Funk-
tionen der Raumkoordinaten x, y und z als auch der 
Zeit t. Die Ladung eines Defektelektrons wird mit 
+ e bezeichnet. Die voneinander unabhängigen Fun-
damentalgleichungen numerieren wir zusätzlich mit 
römischen Zahlen. Der Index n bezieht sich auf 
Elektronen, der Index p auf Löcher. Für das Plasma 
steht unter den Voraussetzungen 1—4 das folgende 
System von Gleichungen zur Verfügung: 

II 

Die Feldgleichungen 

1 3 E c . T r 14- = rot i l 
J 4 7t dt 4ti 

- A d , , = rot E 
c a t 

(i) 

(2) 

mit den Verknüpfungsgleichungen (unter Berück-
sichtigung der 4. Voraussetzung) 

D = E+4tiP=£E, (3) 
B = u II (4) 

(D dielektrische Verschiebung, ß Induktion, £ fre-
quenzabhängige Dielektrizitätskonstante des Halb-
leiters). Die Stromdichte j in (1) enthält die Anteile 
des Konvektionsstromes und des Diffusionsstromes 
der Elektronen und Löcher 
j= - e n Vn + e p Vp + e Dn grad n — e Dv grad p . (5) 

Im Konvektionsstrom ist der Polarisationsstrom be-
reits enthalten. Die Größen Dn und Dp sind die Dif-
fusionstensoren. 

Die Poissoxsche Gleichung 

III div E + 4 rr div P = ^ t i q (6) 

mit der Raumladung 
Q = e{p-n + NA-N&). (7) 

A,| und A'a bedeuten die Dichten der dissoziierten 
Donatoren und Akzeptoren. Ferner gilt 
IV div(// II) = 0 . (8) 

Die Kontinuitätsgleichungen 

V «n + ldiv^-i-divja=-R(np-n*)9 (9) 
(ii e c it e 

VI ^ _ l d i v a ^ + l d i v j p = - R ( n P - n * ) (10) 
at e d t e 

(fl; Eigenleitungs-Dichte) mit den Stromdichten 
jn = - e n Vn -f e Dn grad n , (11) 

jp = e P Vp — e Dp grad p . (12) 

Die Größe R ist der Rekombinationskoeffizient. Die-
ser ist unter Berücksichtigung der Rekombination 
und Paarbildung über Traps konzentrationsabhän-
gig-

Nach H O F F M A N N 6 gilt in Übereinstimmung mit 
S H O C K L E Y und R E A D 7 unter der Voraussetzung räum-
licher Homogenität und bei hinreichender Verdün-
nung der Leitungs- und Defektelektronen sowie der 
Rekombinationszentren 

T n T p / I T 

mit 
7 - T n ( n + K t c ) + T p ( P + & T v ) 

1 1 
7 "Tn = J r T p = 

(13) 

" T rno " « T Tpo 

(n-\- Trapdichte). Die Größen l/rn0 und 1/ Tp0 haben 
die Bedeutung der Einfangwahrscheinlichkeiten für 
Elektronen und Löcher im Grenzfall hoher Dotie-
rung. Es ist ferner 

KTC = NC exp ( - > ^Tv = exp ( -

mit den effektiven Konzentrationen8 NC und N V . 
Die Größen E{. und EY sind die dem unteren Band 

5 A. SCHLÜTER, Z. Naturforschg. 5a. 72 [1950] ; 6a, 73 [1951] . 
6 Siehe Referat A. HOFFMANN in W. SCHOTTKY : Halbleiterpro-

bleme. Vieweg, Braunschweig 1955, Bd. II. 

7 W. SHOCKLEY U . W. T . R E A D . Phys. Rev. 8 7 . 835 [1952]. 
8 E. SPENKE, Elektronische Halbleiter, Springer-Verlag, Ber-

lin, Göttingen, Heidelberg 1955. 



des Leitungsbandes und dem oberen Rand des Va-
lenzbandes entsprechenden Energiewerte, Ej bezeich-
net das Energieniveau der Traps. 

Setzt man (11) und (12) in (9) und (10) ein 
und subtrahiert man (9) von (10), so ergibt sich 
mit (7) 

div ( j n + jp) — — l) +d i v ^ . (14) 

Diese Gleichung bringt in Verbindung mit (6) zum 
Ausdruck, daß die Gesamtstromdichte 
jg= — e nVn + e p V p + e Dn grad n — eDp grad p 

+ 4 - 5 7 ( 1 5 ) 
4 ti D I 

divergenzfrei ist, 
div Jg = 0 . (16) 

VII 
dv 
dt 

Die Bewegungsgleichungen 

+ (Va grad)®n + YnVn = - — + ^ X H } , t '»n t c ) 

VIII 
dv 
dt 

(17) 

,P + ( ̂ P grad) 1>P + 7p I'P = ^ + ®P X / / } 
(18) 

(ran , mp effektive Massen). Die Dämpfungsfrequen-
zen hängen mit den Relaxationszeiten wie folgt zu-
sammen 

7n= 1 = — + — -' n T„ TnT Tns ' 

1 1 , 1 
7P = - = 1 • Tp T„T 7ps 

(19) 

(20) 

Sie sind Funktionen der Temperatur und der Stör-
stellenkonzentration. Die Größen rnT und rpT liefern 
den aus den thermischen Gitterschwingungen resul-
tierenden Beitrag, während rns und rpi; von der 
Streuung der Ladungsträger an den Störatomen her-
rühren 9. 

UnterE* in (17) und (18) verstehen wir die auf 
die Elektronen und Defektelektronen wirkende effek-
tive Feldstärke. Sie bedeutet diejenige Feldstärke, 
die am Ort eines bestimmten einzelnen Ladungs-
trägers vorhanden wäre, wenn man sich diesen aus 
dem Körper entfernt denkt, ohne dabei den Zustand 
der Umgebung zu ändern. Infolge der dielektrischen 
Polarisation des Gitters wird in den Bewegungsglei-
chungen der Feldvektor E modifiziert, und wir 

9 E. M . C O N W E L L , Proc. Inst. Radio Engrs 4 0 . 1 3 2 7 [ 1 9 5 2 ] . 

haben an seiner Stelle die effektive Feldstärke E* zu 
setzen. Es gilt dann unter der Annahme eines isotro-
pen Depolarisationsfaktors 3 L 

E* = E - LP. (21) 

Im Prinzip ließe sich der Depolarisationsfaktor für 
einen gegebenen Kristall theoretisch errechnen, in-
dem man die resultierende Wirkung aller vorhan-
denen Ladungen auf ein bestimmtes Teilchen berück-
sichtigt. Im folgenden wird L als freier Parameter 
betrachtet, dessen Wert vermutlich 5 nicht übersteigt. 
Die Polarisation P setzt sich aus einem den Elektro-
nen und einem den Löchern zugeordneten Anteil zu-
sammen: 

Pn = XonE*-enrn, (22) 

Pv = X0pE*+ePrp, (23) 

P=Pn+Pp. (24) 

Hierbei sind r*n und rv die Vektoren der gemittelten 
räumlichen Verschiebung der einzelnen Elektronen 
bzw. Defektelektronen ünter dem Einfluß von E* . 
bezogen auf das Gesamtsystem der ruhenden Zen-
tren. Es ist 

drn/dt=vn, drp/dt = vp. (25) 

Die Größe Zon ist die dielektrische Suszeptibilität 
pro Volumeneinheit des Kristalls ausschließlich der 
Elektronen, Xop die entsprechende Größe ausschließ-
lich der Löcher. Bezeichnen wir mit £0 die Dielektri-
zitätskonstante des trägerfreien Kristallgitters und 
mit xn und Xp die von den Elektronen und Löchern 
herrührenden frequenzabhängigen Anteile der di-
elektrischen Suszeptibilität, so hat man für die voll-
ständige Dielektrizitätskonstante zu setzen: 

e =e0 + x , X =Xn +XP , (26) 

£0 = 1 + 4 . t x 0 , Zo = Zon + Zop- (27) 

Man erhält dann unter Berücksichtigung der Formel 
(21) bis (24) und (26), (27) schließlich die fol-
genden Beziehungen 

E* = v(E + Lenrn-LePrp) , (28) 

P =i](x0E-enrn + eprp) , (29) 

Pn =Zon VE~ (1 ~XonVL) enV^ 
-Zon r]LePrp, (30) 

PP = ZOP V E+ (1 - ZOP V L ) e P RV 

+ XopVLenrn (31) 
mit der Abkürzung 

»7 = 1/(1 +L/n). (32) 



Wegen der Beziehung 

P = £ ~ l E=(Xo + X)E (33) 
4 71 

folgt aus (29) 
-enrn + eprv = £E*, (34) 

wobei 
£ = (I+Zo^) {q + ZoD (Zo + Z)~Zo} (35 ) 

l-H(l + ZoL)(Xo+Z)-Zo} 
einen Ausdrude für die gesamte Polarisierbarkeit 
darstellt. Für %0 0 ergibt sich in bezug auf den 
elektronischen Anteil 

C* = yJ(l-LZ). (36) 
In die Fundamentalgleichungen III, V, VI, VII und 
VIII haben wir uns die Ausdrücke für E*, P, Pn 

und Pp gemäß (28), (29), (30) und (31) einge-
setzt zu denken. 

Periodische Z u s t ä n d e 

Hinsichtlich der Schwingungen bzw. Wellen des 
Plasmas machen wir einen Exponentialansatz für die 
Störungsglieder ganz analog zur Behandlung der 
entsprechenden Vorgänge in Gasen10,11'12. Die Stö-
rungsglieder, die wir mit einem Winkelzeichen kenn-
zeichnen wollen, werden im Vergleich zu den unge-
störten Plasmagrößen als klein angenommen. Wir 
zerlegen die Zustandsgrößen des Plasmas in einen 
stationären und einen nichtstationären Anteil wie 
folgt: 

n = n0 (r) + n" (r, t), 

P = Po (T) + f (r, t), 
E = E0(r)+E"(r,t), (37) 
H = H0(r) + H~(r,t), 
Vn = Vno (r) + Vn (f, t) , 
Vv = vpo (r) + Vp (r, t). 

Das stationäre Plasma wird durch die zeitunabhän-
gigen Größen n0 (r), p0(r) und_E0(r*) beschrieben. 
Diese sind Lösungen der folgenden drei Fundamen-
talgleichungen unter Berücksichtigung vorgegebener 
Randbedingungen 
III a div E0 + 4 TI div P 0 = 4 TI e(p0 -n0 + Nd - NJ , 

. (38) 
Va - e divjn()= - R(n0p0-nr), (39) 

Via * div j p 0 = -R(noPo-nr) (40) 

1 0 R . SEELIGER , Z . P h y s . 1 1 8 , 6 1 8 [ 1 9 4 1 ] , 
1 1 A . SCHLÜTER , A n n . P h y s . , L p z . 1 0 , 4 1 8 [ 1 9 5 2 ] . 

mit 
j no = - e "o^no + e Dn grad n0 , (41) 
jpo = ePovvo~e Dv grad Po (42) 

und der Gesamtstromdichte 
ho = jno + jpo ; div jgo = o . (43) 

Die stationären Driftgeschwindigkeiten ergeben sich 
dann aus E(v) durch die Beziehungen 

Vn0 = -j.inE0(r) , (44) 
Vp0= Up E0{r) ; (45) 

die Größen //n und jup sind die Beweglichkeiten, die 
bei Anwesenheit eines stationären Magnetfeldes die 
Form eines Tensors annehmen. Bei hinreichend 
hohen elektrischen Feldern werden und //p feld-
abhängig, und es treten hierbei charakteristische Ab-
weichungen vom Ü H M s c h e n Gesetz auf1. 

Bei nichtstationären Plasmavorgängen sind hin-
gegen nicht 3, sondern 6 Zustandskomponenten zur 
Beschreibung des Vorganges maßgebend. Für diese 
machen wir den Ansatz 
n=nüy; p~=p~\p; E~=E^\p; Il=H0ip: 

Vn = Vn0 ip; Vp = Vp0 ip (46) 
ip = exp i(co t-kr) . (47) 

Die Phasenverschiebungen der einzelnen Komponen-
ten gegeneinander sind in die Amplituden einbezo-
gen zu denken. In speziellen Fällen können auch 
Komponenten der Plasmawelle im ganzen Kristall 
verschwinden. Plasmaschwingungen sind ein Spezial-
fall des durch (46) und (47) beschriebenen Bewe-
gungszustandes, der dadurch charakterisiert ist, daß 
die endliche Ausbreitungsgeschwindigkeit der Phase 
verlorengegangen ist. 

Wenn man in der angegebenen Weise eine durch 
die 6 Zustandskomponenten in (46) gekennzeich-
nete Plasmawelle voraussetzt, so kann diese nur 
unter bestimmten Bedingungen existieren. Diese 
Bedingung kommt in einer Dispersionsrelation zwi-
schen dem Wellenvektor h und der aufgeprägten 
Frequenz co zum Ausdruck. Als bestimmende Para-
meter gehen eine Reihe von charakteristischen Größen 
in die Existenzbedingung ein, über die man bis zu 
einem gewissen Grade durch geeignete Auswahl der 
Substanz, durch Dotierung, Temperatur und äußere 
Felder sowie durch die geometrische Begrenzung 
und die Beschaffenheit der Oberfläche frei verfügen 

1 2 G . W I N K L E R , A n n . P h y s . , L p z . 1 6 , 4 1 4 [ 1 9 5 5 ] . 



kann. Durch diese verfügbaren Parameter werden 
zum Teil auch die Eigenfrequenzen des Plasmas so-
wie die LARMOR-Frequenz bestimmt, die in die Dis-
persionsbedingung eingehen. Man erkennt hieraus, 
daß man es im Prinzip durch geeignete Maßnahmen 
in der Hand hat, in Halbleitern dem Plasma eigene 
periodische Zustände zu erzeugen. Es bietet sich 
nunmehr der Weg an, die Existenzbedingung in völ-
liger Allgemeinheit zu formulieren und anschließend 
von hier aus Spezialfälle zu klassifizieren. Es ist je-
doch häufig zweckmäßiger, zunächst an einfachen 
Modellen auf dem direkten Wege die Bedingungen 
für einen Wellenvorgang zu berechnen und diejeni-
gen Wesenszüge der Erscheinung zu bestimmen, die 
für das Frequenzverhalten des Halbleiters besonders 
charakteristisch sind. 

Als Ausgangspunkt hierfür ist es jedoch ange-

bracht, die Fundamentalgleichungen zu linearisie-
ren, wobei die Zustandskomponenten (46) des nicht-
stationären Plasmas mit den stationären Zustands-
größen des Halbleiters verknüpft werden. Die letzt-
genannten sind hierbei als räumlich vorgegebene 
Strukturparameter des Halbleiters anzusehen. 

Setzt man (37) in die Fundamentalgleichung ein, 
so kann man ein entsprechendes Gleichungssystem 
für die zeitabhängigen Zustandsgrößen separieren. 
Produkte von je zwei Störungsgrößen sollen hierbei 
als klein vernachlässigt werden. Schließlich machen 
wir noch die vereinfachende Voraussetzung, daß der 
Rekombinationskoeffizient R nur von den ungestör-
ten Trägerkonzentrationen abhängen soll. 

Unter diesen Voraussetzungen erhält man als Re-
sultat das folgende System linearisierter Gleichungen 
des Plasmas: 

I* 

II* 

Die Feldgleichungen 

1 dEv 
e (n0 Vn + »n0 n ) + e (Po + vpq P ) + e Dn grad ri - e Dp grad 1 " " = f rot H\ 

4 71 Ol 4 71 
/{ div J-,-— _ = rotxi . c dt 

(48) 

(49) 

V* 

vr 

d l'n 

dn 

Die Kontinuitätsgleichungen 

dt ^ " " g r a d no + vno grad ri + /?0 div + n div l'n0 - Dn div grad ri 

dlV<--Z0n»7 d t ~ (1-Zon VL)[ d t
 rnO + nOVn+Vlt0n 

-Zon vH^Qt n>o + Po^P + %oP~)} = - ^ ( " o / ^ + Po" 

dp 
Qt + v l grad Po + Vpo grad + p0 div Vp + div - Dp div grad p 

- d i v f ZOP V 
dEl 
dt (1 - ZOP V L) ( ^ rpd + Po v;+VP0 p 

ZOP rlL(dQt + + -R(n0p" + p0ri). 

Die Bewegungsgleichungen 

VI I * Y f + <V»° g r a d ) + S r a d + 7n ®n 

(50) 

51 

(52) 

+ ß f l 0 + @nri + u ̂ xw„= - e nE~+m»Q-vor;+m*epp~- e u-vn0XH\ 
dr 

m n 

VHP + (r1M) grad)fp + (l7p grad) l'm + ypv] (53) 

ßpofp+0pP>/^;xtop= e tlE^+m"Qlor; + ,nn6nri+ e ^vp0XH\ 
— m mp c 

Die hier auftretenden Frequenzen und ß p 0 ste-

hen mit der LANGMuiRschen Plasmafrequenz ojn0 und 

(Op0 in folgendem Zusammenhang 

nZ j e2 Nd Lri-l tJn 0 = Lrj — = Oin0 , mn 4 7i 
n2 , e2 Nu L >/ 2 iipO = Lt] = wi>0 ; 

mn 4 7i 



sie verschwinden, wenn der Depolarisationsfaktor 
L-*- 0 geht, da hierbei nach (32) rj = 1 wird. Die 
Größen TON und TOP bedeuten die Vektoren der LAR-
MOR-Frequenzen, die zu dem stationären magneti-
schen Feld H0 gehören 

Schließlich sind noch 
e.- rno &n = }] L" , n u ; (57) 

m„ mp 

zu notieren; die Größen r I l0 und rpü sind die statio-
nären räumlichen Verschiebungen der Ladungsträger 
infolge des wirksamen effektiven elektrischen Feldes. 
Als räumliche Bedingung tritt noch die PoissoN-Glei-
chung hinzu: 

CO, 
Ho 

c 
Ho 

c (56) 

III* ~ (1 + 4 711] Zo) div E" - 1] c { r „ grad n0 + r n 0 grad /T + n0 div + n div rn 0 } 
4 71 

+ ye{r p grad p0 + t*Po grad p+ p0 div Tp+ p div l*p0} = e (p~ - / T ) . (58) 

Aus den linearisierten Fundamentalgleichungen ge-
winnt man nunmehr die Existenzbedingung für die 
Plasmawelle, wenn man mit dem Ansatz (46) , (47) 
in die Gleichungen eingeht. Hierbei ist eine Klassi-
fikation der Plasmawellen zweckmäßig. Auf diese 
Weise erhält man Auskunft über das Frequenzver-
halten des Halbleiters, indem man die Material-
eigenschaften wie den Brechungsindex, den Extink-
tionskoeffizienten, die Dielektrizitätskonstante, die 
Leitfähigkeit usw. als Funktionen der Frequenz, der 
Dotierung und der Temperatur bei einer vorgegebe-
nen Halbleiteranordnung bekommt. Wir werden das 
Verhalten einer Plasmawelle weiter unten an einem 
speziellen, naheliegenden Beispiel untersuchen. Zu-
nächst wollen wir jedoch zur Orientierung im Hin-
blick auf die Frage möglicher Anwendungen einige 
einfache, aber grundsätzliche Zusammenhänge er-
örtern. 

Orientierende Betrachtung 

Wir betrachten den denkbar einfachsten Fall einer 
Plasmaschwingung. Als Modell wählen wir eine 
homogene, eindimensionale Halbleiteranordnung 
und beschränken uns auf eine Art von Ladungsträ-
gern (z. B. die Elektronen), die als Ganzes im Kri-
stall unter Einwirkung eines periodischen elektri-
schen Feldes oszillieren. Es handelt sich also um die 
Leitungselektronen im n-Material oder um die Mino-
ritätsträger in einem Kristall vom p-Typ; wir ziehen 
den Hintergrund der Majoritätsträger, der in der 
Gl. VII* in (52) durch Zusatzglieder zum Ausdruck 
kommt, nicht in Betracht. Die Teilchenkonzentra-
tion bleibt hierbei überall zeitlich und räumlich kon-
stant. Rekombination und Paarbildung sollen keine 
Rolle spielen. Schließlich sehen wir von dem Einfluß 
des magnetischen Feldes ab. 

Unter diesen Voraussetzungen reduziert sich das 
System der Fundamentalgleichungen auf die Bewe-
gungsgleichung 

d o e 
^ + n + - O n o r ; = - -tjET, (59) 
dt~ dt mn 

die Größe Q^o ist durch (54) gegeben. Für das die 
Oszillation verursachende elektrische Feld machen 
wir den Ansatz E" = Eq exp (i cot) . Aus der Lösung 
der Differentialgleichung (59) folgt dann für die 
Leitfähigkeit 

V wn0 
4 71 

(60) 
+ co-

und für die dielektrische Suszeptibilität 

7. n = - 4 71 

o Lrt 2 \ 
0 > ~ - 4^wno) 

•> L» •> , 
(61) 

womit sich zugleich die Dielektrizitätskonstante nach 
£ = e0 + 4 ti Xn ergibt. 

In einer Modifikation des Modells denken wir uns 
jetzt nicht die Feldstärke, sondern die Wechselstrom-
komponente des Stromes 

1 dE~ 
4 ti dt ] n = •N <1 VTl • (62) 

vorgegeben, für die wir wieder einen Exponential-
ansatz ~ exp (i co t) machen. Aus (59) und (62) 
läßt sich das elektrische Feld eliminieren, und man 
erhält dann die Bewegungsgleichung 

d'2v~ I L\ o e >v. 
- o + 7n + V 1 + — OJn0 vn = - 4 71 Yj /n ' 

dt' dt '\ \7i) mn 

(63) 
Diese Gleichung ist formal dieselbe wie bei S E E L I -

GER 10. Unser Modell ist jedoch insofern davon ver-



schieden, als bei S E E L I G E R der wechselstrommäßige 
Leerlaufzustand untersucht wird, wobei auch die 
Teilchenkonzentration oszilliert. Die Stromdichte 
bleibt in diesem Falle zeitlich konstant. Das durch 
(63) beschriebene Plasma hat hinsichtlich seines 
gedämpften Schwingungsanteiles die Eigenfrequenz 

(64) 

(ojn0=4 Jie2Njmn ist das Quadrat der L A N G M U I R -

schen Plasmafrequenz). Für die Existenz der ge-
dämpften Eigenschwingung besteht somit die Bedin-
gung 

7n<2 \ r} 1 + L \4-Te"iV7d 

4 . T 
(65) 

Die erzwungene Plasmaschwingung liefert eine Re-
sonanzkurve 

v •> o o v ~ r<>~ y-
(66) 

(er - c ö j ^ + ^ o r 

mit der Eigenfrequenz der ungedämpften Plasma-
schwingung 

V »7 1 + 
L \ 4 -T 

4 -T m n 

(67) 

Die in den Ausdrücken für on, und für die 
Eigenfrequenzen zum Ausdruck kommenden Gesetz-
mäßigkeiten interessieren insbesondere quantitativ 
in bezug auf das Gebiet der Wellenlängen, aber 
auch insoweit, wie die Eigenschaften des Halbleiter-
plasmas mit der Dotierung N,\ mit der Temperatur T 
und mit dem Depolarisationsfaktor L modifiziert 
werden. 

Aus diesem Grunde haben wir, basierend auf 
einer Veröffentlichung von C O N W E L L 9 , am Beispiel 
des Germaniums die Dämpfungsfrequenz im 
Störleitungsbereich als Funktion der Temperatur 
und der Dotierung berechnet und in Abb. 1 und 
Abb. 2 dargestellt. Bei Germanium ist die effektive 
Masse durch Zyklotron-Resonanzmessungen von 
L A X , Z E I G E R , D E X T E R und R O S E N B L U M 13 sowie von 
C R A W F O R D und S T E V E N S 14 experimentell bekannt, ihr 
Wert liegt bei m„ = 0.12 m (m Elektronenmasse). 
Wir haben an anderer Stelle im Anschluß an K A H N L A 

gezeigt, welchen Einfluß dieses Ergebnis auf die 
optischen Eigenschaften der Leitungselektronen im 
Ultrarot hat16. 

Aus Abb. 1 ist zu ersehen, in welcher Weise die 
Dämpfungsfrequenz mit der Temperatur zunimmt. 
Bei hinreichend hohen Temperaturen spielt der Bei-
trag der Streuung an Störstellen gegenüber der 
Wechselwirkung mit den thermischen Schallquanten 
des Gitters praktisch keine Rolle mehr, während bei 
niedrigen Temperaturen yn durch die Störstellenkon-
zentration modifiziert wird. Wenn die Störstellen-

50 100 150 200 250 300 350 W0°K U50 
T — 

Abb. 1. Dämpfungskonstante yn als Funktion der 
Temperatur T bei n-Germanium. 

konzentration groß genug ist, so wird der Tempera-
turkoeffizient sogar negativ und durchläuft mit stei-
gender Temperatur ein Minimum. In Abb. 2 sieht 

101" 1015 1016 Atome/cm3 io'? 

Dotierung Nü — 
Abb. 2. Dämpfungskonstante }'n als Funktion der Dotierung 

bei n-Germanium. 
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man besonders deutlich, daß yn um so stärker mit 
der Dotierung variiert, je kleiner die Temperatur 
ist. In Abb. 3 ist die Eigenfrequenz des ungedämpf-
ten Systemes in Abhängigkeit von der Dotierung 
bei zwei verschiedenen Werten für L aufgetragen. 
Da cön0 nach (66) in dem hier betrachteten Fall 
Resonanzfrequenz ist, kann man aus Abb. 3 zugleich 
entnehmen, in welchem Frequenzgebiet die Reso-
nanzstelle liegt, und insbesondere, wie sich diese mit 
der Dotierung verschiebt. Die Dämpfungsfrequenz 
yn ist näherungsweise gleich der doppelten Halb-
wertsbreite. Somit geben Abb. 1 und Abb. 2 auch 
Auskunft über die Breite der Resonanzlinie, ins-
besondere über ihre Verbreiterung mit zunehmender 
Dotierung und bei ansteigender Temperatur. 

Abb. 3. Plasmafrequenz (5no a ' s Funktion der Konzentration 
(Depolarisationsfaktor L als Parameter). 

Wir betrachten jetzt die Oszillationsbedingung 
(65) für die gedämpfte Plasmaschwingung. Nach 
(64) muß die Dämpfungsfrequenz hinreichend klein 
sein, damit die Oszillation existiert. Die Eigenfre-
quenz con in (64) verschwindet für ein Plasma mit 
vorgegebener Dotierung bei einer ganz bestimmten 
Grenztemperatur T*. 

Oberhalb dieser Temperatur kann keine Oszilla-
tion mehr stattfinden. In Abb. 4 ist die Grenztem-
peratur T* als Funktion der Dotierung dargestellt. 
Man kann daraus ersehen, bis zu welcher Tempera-
tur bei einem Kristall mit vorgegebener Dotierung 
noch gedämpfte Eigenschwingungen auftreten kön-
nen. Durch den Depolarisationseffekt wird die 
Grenztemperatur noch wesentlich modifiziert. 

Abb. 5 zeigt, daß die Eigenfrequenz cön bei einer 
vorgegebenen Temperatur mit abnehmender Dotie-

Abb. 4. Grenztemperatur T* als Funktion der Dotierung 
(Depolarisationsfaktor L als Parameter). 

rung immer kleiner wird und bei einer bestimmten 
Dotierung schließlich verschwindet. Bei noch kleine-
ren Teilchenkonzentrationen gibt es infolge der 
Dämpfung keine gedämpften Eigenschwingungen 
mehr. Die Größe dieser Grenzdotierung hängt wie-
derum von der Temperatur ab. Es ist bemerkens-
wert, daß man infolge des Dämpfungseffektes ohne 
weiteres in den Bereich technisch interessierender 
Frequenzen gelangt, wenn man sich von größeren 
Werten der Dotierung herkommend der Grenzdotie-
rung nähert. 

Dotierung Nj 

Abb. 5. Eigenfrequenz ö>n als Funktion der Dotierung 
(L als Parameter). 

Der Verlauf der Leitfähigkeit o„ mit der Fre-
quenz bei 200° K und 300° K ist in Abb. 6 wieder-
gegeben. Durch den Depolarisationseffekt wird die 
Leitfähigkeit in sehr charakteristischer Weise ver-
ändert. Es tritt für L 0 sogar Plasmaresonanz auf, 
die zur Folge hat, daß insbesondere auf der Seite 



kleinerer Frequenzen grundsätzliche Abweichungen 
von dem Leitfähigkeitsverhalten bei L = 0 zu erwar-
ten sind. D R E S S E L H A U S , K I P und K I T T E L 3 haben die 
Vermutung ausgesprochen, daß bisher noch unge-
klärte Anomalien bei Leitfähigkeitsmessungen im 
Millimeter- und Mikrowellenbereich auf dieser Er-
scheinung beruhen. 

ti?-10 

Kreisfrequenz cu -
Abb. 6. Leitfähigkeit on als Funktion der Frequenz bei 

n-Germanium; Dotierung 1014 Atome/cm3 

(L als Parameter). 

Abb. 7 zeigt den Verlauf der Dielektrizitätskon-
stanten mit der Frequenz bei 200 und bei 300 K. 
Infolge des Depolarisationseffektes sind auch hier 
bei kleinen Frequenzen bemerkenswerte Abweichun-
gen von dem Verlauf bei L = 0 zu erwarten. Man 
sieht, daß für hinreichend große Frequenzen der 
elektronische Anteil von e gegen den vom Gitter her-
rührenden Beitrag £0 vernachlässigbar klein wird. 
Der durch die freien Ladungsträger bedingte Tem-
peratureinfluß macht sich erst bei relativ kleinen 
Frequenzen bemerkbar. Bei schwach dotiertem Mate-
rial ist £ in der Umgebung der Zimmertemperatur 
positiv und nimmt im Falle L = 0 mit steigender 
Temperatur und bei größer werdender Frequenz zu. 
Bei hinreichend kleinen Frequenzen nimmt £ mit 
wachsender Dotierung ab und kann schließlich auch 
negative Werte annehmen. Wenn jedoch die De-
polarisation von Null verschieden ist, so zeigt sich 
insbesondere bei relativ kleinen Frequenzen eine cha-
rakteristische Anomalie, indem nunmehr bei L =f= 0 
die Dielektrizitätskonstante sogar größer als £0 wer-
den kann. In diesem Frequenzbereich ist der Tem-

peraturkoeffizient von £ negativ, während bei L = 0 
ein positiver Temperaturkoeffizient vorhanden ist. 

T-200°K:L-5 

n- Germanium, N^-tO 1.Atome/cm3 

r- 200°K i'O 

10" 10 

Kreisfrequenz cu — 
Abb. Dielektrizitätskonstante s als Funktion der 

Kreisfrequenz co (L als Parameter). 

Beispiel einer Plasmawelle 

Die allgemeineren Betrachtungen der beiden ersten 
Abschnitte sollen jetzt an einem Beispiel explizit durch-
geführt werden. Als Modell wählen wir einen unbe-
grenzten, homogenen und raumladungsfreien Halblei-
ter (n-Typ). Von der Anwesenheit der Minoritätsträger 
sehen wir wiederum ab. Wir setzen insbesondere vor-
aus, daß die Elektronenkonzentration zeitlich und räum-
lich im gesamten Halbleiter konstant bleibt. Als äußere 
Strukturparameter des stationären Plasmas geben wir 
vor: 

fno = (t>no*, vnw ,0) ; H0 = (0 , 0 , Hoz) . (68) 
Der elektromagnetische Teil der Plasmawelle sei eine 
parallel zur z-Achse polarisierte Welle, die sich in Rieh 
tung der :r-Achse fortpflanzt. Die Plasmawelle bestehi 
somit aus den folgenden Komponenten 

jr=(0,E;,0); If =(0,0, Hz); 

= (Vnx , Vny , 0) , (69) 

für die wir den Ansatz machen 

Ey = EyO ip , Hz — HzO yj , Vnx = 1:m0 ip , Vny = VnyO xp ; 
2 T yj = exp i(co t — k x) ; k= '- . (70) 

Mit (70) gehen wir in die Feld- und Bewegungsglei 
chungen I*. II*. III* ein. Diese lauten jetzt 

1 dEy 
c dt 

4.t 

II* 

c 

,idH 
e dt 

e Nd Vny = dHz 
d x 

d El 
dx 

(71) 

(72) 



IIP 

dvny 
dt 

dvnx , dvnx , ^ , n2 - , -+ Vnoje g-- -+- yn Vnx + + JU CO Vnx dt 
e /A 

mn c n̂oy Hz , 

dvny 
Vnox + yn Vny + QnO ^ny — ,U OJz Vnx 

= -—rj Ey " T n̂o-r H z • mn c 

(73) 

(74) 

Aus (70) bis (74) erhält man schließlich als Existenz-
bedingung der Plasmawelle die Dispersionsrelation 

02 CO k2 c2\ 
JU CO ) 

i jJ, COz (CO — 

(p\v 

k2 c 

no* — ~ V ) COnO 

+ - ~ v n w } f i a z = 0 (75) 

nit 

0 = yn + i (co - k vnox - ; Q„0 = \^ « 

V = 1+^0 

nO ' 

(76) 

Wir machen jetzt noch zusätzlich die vereinfachende 
Voraussetzung, daß die stationäre Größe = 0 sein 
-oll. Nunmehr ergibt die Rechnung bei dem Ansatz 
k = ß + ia für den Brechungsindex ß und den Extink-
ionskoeffizienten a die folgenden Ausdrücke 

^ w i M + ^ l + ^ - l - S S b . (77) 2 iv\ + wt' 

- ^ ' W i + W l - W . f + I ^ (78, 2 w\ + w\ 
nit 

Jw! w3)2 (w2 w3)2 1 
{w\ + wj)2 {w]+io\)2\ 

[ w1w2w?i WJ w5 — w2 

2 (wf + w\)2 u>f -+-

/u \ 4 n co 

C2 f 7n , C02)2 / Z, »7 CO20\2 1 W 2 = 1 1 — CO I 1 — 5-ju ( OJ o) \ 4 TT er 

W3= -jutoz vnoy 

0 / Lrj co 2„. a M;4 = 2 7 n c u - 1 1 - - 4 - - t - ) - y ( o n 0 y n 

- W Y J - ( ^ C O 2 ) 2 C Ü . 

L 1] (!) no 

4 TT OJ2 

Zwischen den Komponenten der Plasmawelle bestehen 
die folgenden Relationen (99 Phasenwinkel) 

) 6 (79) 0)„o \ tt CO / ?nn 

(pi = arc tg 

1 
fi (Oz 

H OJ2 — (ß2 — u2) c2 

2~ä~ß̂ 2 

Lrj(x>l 0 1 Vn — ( CO — • - -' 4 71 OJ 

k2 c2\ 1 
U (Ol OJ„0 

• (80) 

<p2 = arc tg ^ . 

Ct = 

C2 = 

7 n co + 
«nO 

C 2 

U CO CÔo 

k l .^k) 2aJ c\ _ c2(ß*-a*) 
4 71 OJ J U CO COnO /X (O &Jn0 

L rj 
4 TT OJ 
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OJ 

4 71 OJ ) OJNF 

f / ; = - ^ ^ U (O 

+ V ; 

(81) 
<?3 = arc tg 

Aus der bisherigen orientierenden Betrachtung ist zu 
ersehen, daß sich unter einfachen Voraussetzungen Vor-
aussagen über das Frequenzverhalten der freien La-
dungsträger in Halbleitern auch in jenem Bereich des 
Spektrums machen lassen, der experimentell nur schwer 
zugänglich ist. Darüber hinaus ist es bemerkenswert, 
daß bei elektronischen Halbleitern auch im technischen 
Wellenlängenbereich Eigenschwingungen mit einem 
charakteristischen Frequenzverhalten zu erwarten sind. 
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